Thermoresponsive, stretchable, biodegradable and biocompatible poly(glycerol sebacate)-based polyurethane hydrogels
نویسندگان
چکیده
منابع مشابه
Fabrication of PGS/CaTiO3 Nano-Composite for Biomedical Application
Biodegradable elastomeric materials are gaining extensive attention in the field of soft tissue engineering. Poly (glycerol sebacate) (PGS) is a novel biocompatible elastomer in this scope. However this polymer has poor mechanical properties especially when the molar ratio of glycerol is higher than sebacic acid. Calcium Titanate (CaTiO3) is a biocompatible ceramic with some degr...
متن کاملThermoresponsive graphene oxide – starch micro/nanohydrogel composite as biocompatible drug delivery system
Introduction: Stimuli-responsive hydrogels, which indicate a significant response to the environmental change (e.g., pH, temperature, light, …), have potential applications for tissue engineering, drug delivery systems, cell therapy, artificial muscles, biosensors, etc. Among the temperature-responsive materials, poly (N-isopropylacrylamide) (PNIPAAm) based hydrogels have been widely developed ...
متن کاملEndothelialized microvasculature based on a biodegradable elastomer.
Vital organs maintain dense microvasculature to sustain the proper function of their cells. For tissue- engineered organs to function properly, artificial capillary networks must be developed. We have microfabricated capillary networks with a biodegradable and biocompatible elastomer, poly(glycerol sebacate) (PGS). We etched capillary patterns onto silicon wafers by standard micro-electromechan...
متن کاملBiodegradable and Elastomeric Poly(glycerol sebacate) as a Coating Material for Nitinol Bare Stent
We synthesized and evaluated biodegradable and elastomeric polyesters (poly(glycerol sebacate) (PGS)) using polycondensation between glycerol and sebacic acid to form a cross-linked network structure without using exogenous catalysts. Synthesized materials possess good mechanical properties, elasticity, and surface erosion biodegradation behavior. The tensile strength of the PGS was as high as ...
متن کاملAcellular and Radically Polymerized Biodegradable Materials to Control Tissue Interactions After Myocardial Infarction
Left ventricular remodeling following myocardial infarction (MI) often induces congestive heart failure, which has limited treatment options. Advances in tissue engineering and polymer chemistry, however have allowed for the development of alternative treatment strategies. Specifically, the formation of biodegradable polymers into complex scaffolds or injectable materials is being evaluated. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017